# Difference between revisions of "Basic facts about Bohr sets"

(→Definition) |
|||

Line 3: | Line 3: | ||

===Version for cyclic groups=== | ===Version for cyclic groups=== | ||

− | Let <math>r_1,\dots,r_k</math> be elements of <math>\mathbb{Z}_N</math> and let δ>0. The <em>Bohr set</em> <math>B(r_1,\dots,r_k;\delta)</math> is the set of all <math>x\in\mathbb{Z}_N</math> such that <math>r_ix</math> lies in the interval <math>[-\delta N,\delta N]</math> for every i=1,2,...,k. | + | Let <math>r_1,\dots,r_k</math> be elements of <math>\mathbb{Z}_N</math> and let δ>0. The <em>Bohr set</em> <math>B(r_1,\dots,r_k;\delta)</math> is the set of all <math>x\in\mathbb{Z}_N</math> such that <math>r_ix</math> lies in the interval <math>[-\delta N,\delta N]</math> for every i=1,2,...,k. If <math>K=\{r_1,\dots,r_k\}</math>, then it is usual to write <math>B(K,\delta)</math> for <math>B(r_1,\dots,r_k;\delta)</math>. |

===Version for more general finite Abelian groups=== | ===Version for more general finite Abelian groups=== | ||

Line 14: | Line 14: | ||

Needs to be written ... | Needs to be written ... | ||

+ | |||

+ | ===Regularity=== | ||

+ | |||

+ | Of considerable importance when it comes to making use of Bohr sets is the notion of regularity, introduced by Bourgain. Here we give the bare definition: below it will be explained why regularity is useful. | ||

+ | |||

+ | The formal definition (as it appears in Sanders's paper) is this. Let K be a set of size d. Then the Bohr set <math>B=B(K,\delta)</math> is C-<em>regular</em> if for every <math>0\leqη\leq 1/Cd</math> we have the inequality <math>|B(K,\delta(1+\eta))|\leq(1+Cd\eta)|B(K,\delta)|</math> and also the inequality <math>|B(K,\delta(1-\eta))|\geq(1+Cd\eta)^{-1}|B(K,\delta)|</math>. | ||

+ | |||

+ | The precise numbers here are not too important. What matters is that if you slightly increase the width of a regular Bohr set, then you only slightly increase its size. Another way to think about it is this. Let B' be the "small" Bohr set <math>B(K,\eta)</math>. Then if you choose a random point in B and add to it a random point x' in B', the probability that x+x' also belongs to B is close to 1. An equivalent way of saying this is that the characteristic measure of B is approximately unchanged if you convolve it by the characteristic measure of B'. | ||

==Ways of thinking about Bohr sets== | ==Ways of thinking about Bohr sets== |

## Revision as of 11:15, 6 February 2011

## Contents

## Definition

### Version for cyclic groups

Let [math]r_1,\dots,r_k[/math] be elements of [math]\mathbb{Z}_N[/math] and let δ>0. The *Bohr set* [math]B(r_1,\dots,r_k;\delta)[/math] is the set of all [math]x\in\mathbb{Z}_N[/math] such that [math]r_ix[/math] lies in the interval [math][-\delta N,\delta N][/math] for every i=1,2,...,k. If [math]K=\{r_1,\dots,r_k\}[/math], then it is usual to write [math]B(K,\delta)[/math] for [math]B(r_1,\dots,r_k;\delta)[/math].

### Version for more general finite Abelian groups

Let G be a finite Abelian group, let [math]\chi_1,\dots,\chi_k[/math] be characters on G and let δ>0. The *Bohr set* [math]B(\chi_1,\dots,\chi_k;\delta)[/math] is the set of all [math]g\in G[/math] such that [math]|1-\chi_i(g)|\leq\delta[/math] for every i=1,2,...,k.

Note that this definition does not quite coincide with the definition given above in the case [math]G=\mathbb{Z}_N[/math]. In practice, the difference is not very important, and sometimes when working with [math]\mathbb{Z}_N[/math] it is in any case more convenient to replace the condition given by the inequality [math]|1-\exp(2\pi i r_jx/N)|\leq\delta[/math] for each j.

### Version for sets of integers

Needs to be written ...

### Regularity

Of considerable importance when it comes to making use of Bohr sets is the notion of regularity, introduced by Bourgain. Here we give the bare definition: below it will be explained why regularity is useful.

The formal definition (as it appears in Sanders's paper) is this. Let K be a set of size d. Then the Bohr set [math]B=B(K,\delta)[/math] is C-*regular* if for every [math]0\leqη\leq 1/Cd[/math] we have the inequality [math]|B(K,\delta(1+\eta))|\leq(1+Cd\eta)|B(K,\delta)|[/math] and also the inequality [math]|B(K,\delta(1-\eta))|\geq(1+Cd\eta)^{-1}|B(K,\delta)|[/math].

The precise numbers here are not too important. What matters is that if you slightly increase the width of a regular Bohr set, then you only slightly increase its size. Another way to think about it is this. Let B' be the "small" Bohr set [math]B(K,\eta)[/math]. Then if you choose a random point in B and add to it a random point x' in B', the probability that x+x' also belongs to B is close to 1. An equivalent way of saying this is that the characteristic measure of B is approximately unchanged if you convolve it by the characteristic measure of B'.